

# The Rearrangement of Oxonium Ylides through the 1,4-hydride abstraction



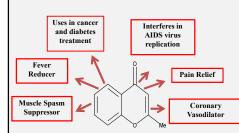
Kathryn Fossaceca, Robert Montecinos, and Deana Jabe Department of Biology and Physical Sciences, Marymount University, Arlington VA 22207

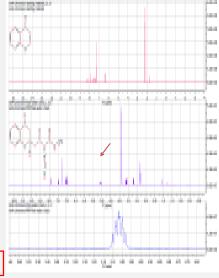
### **Abstract**

Oxonium ylides are a class of dipolar molecules that contain a negatively charged carbon atom connected to a positively charged oxygen atom. These molecules may undergo one of two well-known types of rearrangements: the [1,2]- Steven's and the [2,3]sigmatropic rearrangements. Rh(II) catalyzed oxonium vlide generation of chromone diazoacetoacetate tetrahydro-4-pyranones affords methyl chromones in up to 70% yield. These results suggest a new pathway for the rearrangement of oxonium vlides. We believe this pathway is the [1,4]-hydride abstraction process.

## **Background**

Figure 1. The [1,2]- Steven's and the [2,3] sigmatropic rearrangements.





Figure 2. Biological applications of methyl chromone.

### Results

# The Mukaiyama Michael Addition Reaction

Table 1. Yields from the Mukaiyama Michael Addition Reaction.

| Substrate       | %Yield |
|-----------------|--------|
| chromone        | 96     |
| 6-bromochromone | 99     |
| 3-bromo-4H-     | 78.1   |
| chromen-4-one   |        |



Scheme 1. 1H-NMR of the MukaiyamaMichael Addition Reaction for Figure 3. Images of the Mukaiyama Michael Reaction (left) and the the Chromone substrate.

### The Decomposition Reaction

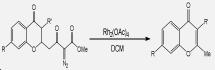
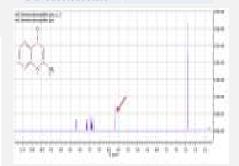




Table 2. Yields from the Decomposition Reaction.

| Substrate                  | %Yield |
|----------------------------|--------|
| Chromone diazoacetoacetate | 70     |
| 6-bromochromone            | 51.5   |



Scheme 2, <sup>1</sup>H-NMR of the Decomposition Reaction for the Chromone zoacetoacetate substrate.

Decomposition Reaction (right).





## **Conclusion/Future Plans**

- The results show the methyl chromones form through the [1,4]-hydride abstraction.
- Yields must be improved for the substrates used in the decomposition reactions.
- The reaction scope will be expanded.

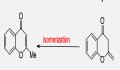



Figure 4. The [1,4]- hydride abstraction mechanism.

### References

- Doyle, M.P.; McKervey, M.A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998.
- Ibrahim, M. A. (2010). Synthesis and chemical reactivity of 2-methylchromones. ARKIVOC, 1, 98-135
- Padwa, A; Hornbuckle, S.F. Chem. Rev., 1991, 91, 263-
- Pirrung, M.C.; Brown, W.L.; Rege, S.; Laughton, P. J. Am. Chem. Soc., 1991, 113, 8561-8562

### **Acknowledgements**

We would like to thank, The Marymount University Discover Research Program for their funding and support.

Differenced